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A numerical computat ional  method to solve the problems of  mass transport  to the impinged surface of  
a wall-jet electrode reactor is put  forward, thus providing the necessary tool for a quantitative electro- 
chemical investigation of  the mechanism of  electrode processes, using a wall-jet electrode reactor as a 
hydrodynamic electrode system. The computat ional  method is based on a second order-correct impli- 
cit finite difference approach and a coordinate t ransformation making a simple Cartesian space dis- 
cretization compatible with efficient computing, thus allowing the computat ions  to be performed 
on a personal computer.  The computat ional  approach is demonstrated through calculation of  a single 
step chronoamperometr ic  transient for a simple one electron transfer reaction and shown to be accu- 
rate by comparing the computed with experimentally determined current transients using as a model  
reaction the reduction of  ferricyanide ions at a platinum electrode surface from a 0.01 M K3Fe(CN)6-  
0.01 M K4Fe(CN)6 solution containing 1 M KC1 as supporting electrolyte 

List of symbols 

a nozzle diameter (m) 
Ci concentration of electroactive species i (molm -3) 
C i normalized concentration of electroactive species i 
D i diffusion coefficient of the electroactive species i 

(m 2 s -1) 

E electrode potential (V vs SCE) 
E0 equilibrium potential (V vs SCE) 
F Faraday's constant (Cmo1-1) 

dimensionless parameter, describing the distance 
normal to the impinged electrode 

H distance between the working electrode and the tip 
of the nozzle (m) 

I electrode current (A) 
kr constant linking the typical velocity of the wall-jet 

to the mean velocity in the nozzle 
M flux of exterior momentum flux 

u kinematic viscosity (m 2 s -1) 
r distance along the impinged electrode in cylindri- 

cal pole coordinates having their origin at the 
intersection of the jet axis and the electrode surface 

R radius of the impinged electrode (m) 
"r dimensionless time 
t time (s) 
Vr velocity component along the impinged electrode 

(ms -1) 
Vz velocity component normal to the impinged 

electrode (m s- 1) 
Vf volume flow rate (m -3 s -1) 

dimensionless parameter, describing the distance 
normal to the impinged electrode 

z distance normal to the impinged electrode in 
cylindrical pole coordinates having their origin at 
the intersection of the jet axis and the electrode 
surface (m) 

1. Introduction 

In a previous paper [1] the design and construction of 
a reactor exhibiting true wall-jet electrode hydrody- 
namics was reported. The reactor is characterized by 
the size of the impinged electrode surface and is 
designed to suit the need for a large working electrode 
surface area in the study of the mechanism of the a.c. 
electrolytic graining of rolled aluminium substrates. 
In this paper, a numerical computation method is 

put forward, to solve the mass transport problems 
involved in using the wall-jet electrode reactor as a 
hydrodynamic electrode system in a quantitative elec- 
trochemical investigation of electrode reaction 
mechanisms. The computational method developed, 
is based on a second order correct-implicit finite differ- 
ence approach and a space coordinate transformation 
making the use of a simple Cartesian grid compatible 
with efficient computing, thus allowing the calcula- 
tions to be performed on a personal computer. The 
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computational method hereby particularly distin- 
guishes itself from the one hitherto published [2-5], 
being based on a mainly first order-correct implicit 
finite difference approach and a space discrefization 
according to a grid expanding in size, in proportion 
to the concentration boundary layer thickness across 
the impinged surface of a wall-jet electrode reactor. 

Since potential step chronoamperometry is a 
powerful tool in the mechanistic study of electrode 
processes, the general computational method is 
demonstrated through the computation of a single 
step chronoamperometric transient for a simple one 
electron transfer reaction. Current transients recorded 
in the newly designed reactor are reported, confirming 
the validity of the computational method. 

2. Basic equations 

The mathematical formulation of mass transport to 
the impinged surface of a wall-jet electrode reactor 
and more in particular its level of approximation, 
has major consequences, not only for the validity 
and accuracy of the computational method, but also 
for the computational strategy itself, since the mathe- 
matical formulation is the first step in such a strategy. 
Therefore, in this paragraph, the mathematical for- 
mulation is elaborated, pointing out all approxima- 
tions made; the numerical computational method 
itself is presented and evaluated in the subsequent 
paragraphs. 

Mass transport of an electroactive species i, of 
minor concentration Ci (tool m -3) in a solution con- 
taining an excess of indifferent supporting electrolyte, 
to the impinged surface of a wall-jet electrode reactor 
is described by [6, 7] 

OC i 02Ci Vr OCi OCi 
at -Dio~-z2 - -~r - V z  Oz (1) 

where r and z are the distances along and normal to 
the impinged electrode in cylindrical pole coordinates 
having their origin at the intersection of the jet axis 
and the electrode surface, vr and vz the corresponding 
velocity components and where Di (m 2 s -1) is the dif- 
fusion coefficient of the electroactive species. In writ- 
ing the above equation, commonly known as the 
convective diffusion equation, it is assumed that 
homogeneous reactions producing or consuming i 
do not occur. The radial diffusion has been omitted, 
which can be understood from the following observa- 
tion. Radial diffusion effects can only become impor- 
tant in regions where the solution is most stagnant, 
that is, near the outer radius of the impinged electrode 
surface [1]. However, in this region, the radial concen- 
tration gradients are necessarily small [3, 4] and thus 
the effect of radial diffusion upon the concentration 
changes in the wall-jet can be neglected [8, 9]. 

It is the integration of Equation 1, with the 
appropriate boundary conditions, which yields the 
quantities of interest, being the time dependent con- 
centration profile of the electroactive species and 
derived from it, the electrode current. To perform 

the integration, the velocity components Vr and %, 
determined by the fluid dynamics, must be known. 

The fluid dynamics are governed by the continuity 
and Navier-Stokes equation, which, following the 
Prandtl boundary layer theory [10], reduce to 

OVr OVz 
o-7 + = 0 (2) 

and 

OVr OV~ O~ V~ 
Vr O--r -j- vz Gq~ - = / /  0 Z  2 (3) 

for a wall-jet at hydrodynamic equilibrium, respect- 
ively. This problem was studied by Glauert [11], 
who found that an exact similarity solution of the 
above boundary layer equations can be obtained, if 

Vr:Vz:O a t z = 0  (4) 

and 

Vr ~ 0 a sz  > oc (5) 

are used as boundary conditions. The solution is thus 
strictly valid only for a fluid jet of zero width, sub- 
merged in a stationary medium of that fluid, which 
impinges perpendicularly onto a plane wall and 
spreads out radially over it. Though, it can be used 
as a good approximation of the velocity distribution 
in a wall-jet electrode reactor, provided that the width 
of the jet is small compared to the size of the impinged 
electrode and the reactor walls do not interfere with 
the flow across the impinged surface [8, 9, 12]• 

Following Glauert [11], the velocity distribution is 
expressed in terms of a dimensionless parameter T/ 
describing the distance normal to the impinged 
electrode 

(135M'~ 1/4 
~1 = k,32u3r5 ] z (6) 

where u (m 2 S -1) is the kinematic viscosity of the fluid 
and M is the flux of exterior momentum flux, defined 
by 

Io(; ) M = rVr rv2dr dr (7) 

As proved by Glauert [11], M is constant throughout 
the wall-jet and can be approximated by 

• ./ 'volume flow rate] 2 
M = ½ (typical wall-jet velocity) ~ ~ad--~al 

/ 

(8) 
If the typical wall-jet velocity is assumed to be propor- 
tional to the mean velocity in the jet at the nozzle exit, 
Equation 8 becomes 

1 ,, f4Vf'~ 2 4 3 ( v f )  _ k r ' ;  
M = ~Kr ~ )  k,27r] - 27r3a 2 (9) 

where Vf (m 3 s -I) is the volume flow rate, a (m) is 
the nozzle diameter and Ur is the proportional fac- 
tor, to be determined by experiment for the reactor 
used [12]. 

The radial and axial velocity components are given 
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Fig. 1. Variation of the radial and axial velocity with 7, illustrated 
by plotting the functionsf'(~/) and h(r/), respectively. 

by 

where 

= (15M'~ 1/2 
"Or \2ur3) ft(rl) (10) 

3 
% = ~\  3r 5 ,] h(r/) (11) 

f ' ( r / )  = 2g(1 - g3) (12) 

f(r/) = g2 (13) 

h(rl) = ~ r / f ' ( r / ) - f ( r / )  (14) 

and 

r / = l n ( ( l + g _ + g 2 ) l / 2 ~  + (x /~g~ (15) 1 - g  ) v/3 tan-1 ~,2--~) 

with ~7 varying between 0 and c~ as g goes from 0 to 1 
[8, 11]. 

From Equations 10 and 11 it is clear that both the 
radial and axial velocity components decrease with 
increasing r. The variation of Vr and vz with ~7 is illus- 
trated in Fig. 1, by plotting the functions f'(rl) and 
h0?), respectively. From these plots it can be seen 
that the radial and axial velocity components are 
zero at the impringed surface, as dictated by the 
boundary conditions. Starting from zero, the radial 
velocity component increases, reaching a maximum 
at z/= 2.01 and then declines back to zero. The axial 
velocity component increases from zero, at first with 
a parabolic dependence, passes through a maximum 
at ~ = 2.31 and drops back to zero for ~7 = 3.96. For 
these values of r/, the flow is away from the electrode. 
For values of ~ larger than 3.96, h(~) is negative, 
reaching a limit value of -1 .  In this region the flow 
is thus towards the electrode. In evidence, a boundary 
exists at z /= 3.96 which separates the flow towards 
and away from the electrode, meaning that the 
impinged surface is in contact only with fluid which 
just passed through the nozzle [8,9]. The boundary 
and the schematic stream lines are shown in Fig. 2. 

Since concentration changes occur in a fluid layer 
adjacent to the impinged electrode, of which the 

z = o 

r=O r 

Fig. 2. Schematic illustration of the pattern of flow in the vicinity of 
the impinged surface [8]. 

thickness is in proportion of (Di/u) 1/3 to the hydrody- 
namic boundary layer thickness [7, 13,14] and typical 
values of D i and u for most electrolytes are 
10 .9 m 2 s -1 and 10 .6 m 2 s -1, respectively, the velocity 
distribution of particular interest is that for 
0 < r /<  ~c with ~c --- 3.96(Di/u) 1/3 < 1. For these 
small valueS of ~7 Equation 15 can be approximated by 

g ~ ½~7 (16) 

so that, taking into account Equations 12 to 14 and 
Equation 6, the equations for the radial (Equation 
10) and axial (Equation 11) velocity component 
reduce to [8] 

= ( 1 2 5 M 3 ~  1/4 
~3r k 216u5 / r ' l l / 4  (17) 

/ 
and 

3 1/4 
( ~  z2r -15/4 (18) 7 

Vz= 8 \ 2 1 6 u  ) 

These approximated expressions for Vr and vz can 
thus, in most circumstances, be used instead of the 
full expressions, when integrating the convective diffu- 
sion equation. 

3. Experimental 

The single step chronoamperometric transient 
measurements to test the validity of the computa- 
tional method presented, were carried out for the 
reduction of ferricyanide ions at a platinum electrode 
surface from a 0.01 M K3Fe(CN)6-0.01 M K4Fe(CN)6 
solution containing 1 M KC1 as supporting electrolyte. 
The electrode potential was stepped from its equi- 
librium potential (E0 = 2.28 x 10 -1V vs SCE) to a 
potential for which mass transport is rate determining 
(between -4.50 x 10 -1 and -5.00 x 10 -1 V vs SCE, 
depending on the reactor parameters used [1]), since, 
for large overpotentials, the electrode reaction 
mechanism for the reduction of ferricyanide ions at 
a platinum electrode surface is known to be well 
modelled by a simple one electron transfer reaction 
[4]. The experimental details were reported in a pre- 
vious paper [1], concerning the design and construc- 
tion of the wall-jet electrode reactor used. 
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4. Results and discussion 

4.1. Computation of  a chronoamperometric transient 

Consider a simple one electron transfer reaction 

A + e -  < > B (19) 

at the impinged surface of a wall-jet electrode reactor, 
in a solution containing an excess of indifferent sup- 
porting electrolyte, with the electrode potential being 
stepped from its equilibrium potential to a potential at 
which the kinetics for the reduction of A become so 
rapid that mass transport of the electroactive species 
A to the impinged surface is controlling the rate of 
reaction. 

4.1.1. Mathematical model. The convective diffusion 
equation and boundary conditions relevant to the 
defined problem can be formulated as 

OC_C__A _ D 02C br_ll/40CA 7 bz2r_lS/40CA 
8 

where 

t<.O O<~r<~R 

C A  = 1 

t > 0 0 < . r < < . R  

C A = 0  

O~r<~R z 

C A = I  

r = 0  0 < z  

C C_A=I 

0C_A _ 0 

Or 

0~<z 

z = 0  

) OC) 

= CA/C  ulk 

is the normalized concentration of A, 

(125M3 ~ 1/4 

b :  t 2-Tirji ) 

and R is the radius of the impinged electrode. 

0z 
(20) 

(21) 

(22) 

(23) 

(24) 

(24a) 

(24b) 

Equation 22 expresses that, under mass transport- 
limited conditions, the electroactive species A can not 
coexist with the electrode; the surface concentration 
of A must therefore equal zero. The boundary condi- 
tions at r = 0, Equations 24(a) and 24(b), express that 
the fluid passing through the nozzle and the stationary 
surrounding fluid are of equal composition and that in 
the centre of the jet the radial flux of A is zero, respect- 
ively. Since the concentration boundary layer is infini- 
tesimally thin at r = 0, the above conditions apply for 
all z > 0. 

4.1.2. Numerical scheme. The above partial differential 
equation, with the appropriate boundary conditions, 
is solved using the alternating direction implicit 
finite difference method. It is the discernment of the 
boundary conditions at r = 0 and in particular of 
the boundary condition expressed by Equation 
24(b), together with the use of an upwind scheme in 
the radial direction (discussed below), which allows 
this second order-correct finite difference method to 
be employed. 

Space discretization 

The finite difference method requires a spatial grid 
with a high degree of regularity. In particular, it requires 
the grid to be set up so that, in a two-dimensional 
space, the grid points are located at the intersections 
of two families of rectilinear lines [15, 16]. 

The obvious discretization of the (r, z)-plane, shown 
in Fig. 3, is likely to be unsatisfactory, given the highly 
nonuniform accessibility of the electrode. In evidence, 
if the mesh size is chosen sufficiently small to cover the 
thin end of the concentration boundary layer with a 
number of grid points large enough to ensure conver- 
gence, the total number of grid points will be incon- 
veniently large, since the same mesh size is applied 
at the edge of the electrode where the concentration 
boundary layer is much thicker. Furthermore, for 
small values of r the greater part of the grid points 
lies outside the concentration boundary layer, where 
C__A is known. 

These difficulties are overcome if the space dis- 
cretization, shown in Fig. 4, is performed after trans- 
formation of the physical (r,z)-plane in the 
dimensionless computational (~, ~7)-plane, using 

¢ 135M'~ 1/4 
17 = \ 3 2 u 3 r S j  z (6) 

and 

= r /R  (27) 

as coordinate transformation formulas. As can be 
(25) seen from comparison of Figs 3 and 4, the use of a 

simple Cartesian grid in the computational plane 
comes down to using an expanding grid restricted to 
the concentration boundary layer in the (r, z)-plane. 

(26) Thus, the coordinate transformation makes the use 
of a simple Cartesian space discretization scheme 
compatible with efficient computation. 
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Notice that the grid points in Fig. 4 are shifted one- 
half an increment from the boundary r /= 0, thus 
avoiding having to specify the value of C__A at the 
impingement point { = q = 0. 

Equation discretization 

In the computational ((,r/)-plane, Equation 20 
reduces to 

~5/2 0 C A  02C---A 8// OC A ll 20C~A 

07 - 072 27b-TA '7 --+9 AA ' N 
(28) 

where r is the dimensionless time, defined as 

/" 135M "~ 1/2 
"I-= \ 3 2 ~ J  DAt (29) 

The appropriate boundary conditions are 

r~<0 0~<~<1 O~<r/~<r/c (30) 

C_A=I 

7 > 0  7 = 0  (31) 

C__A = 0 

0 ~ < 1  ~ = ~ e  (32) 

C A = I  

= 0 0 < r/~<~c (33) 

C__A = 1 (33a) 

0C__A 
- 0 (33b) 

0~ 

For the discretization of Equation 28 the alternating 
direction implicit method is used [15-18]. This 
method involves the alternated use of two finite differ- 
ence equivalents to Equation 28. For the first finite 
difference equation the equivalents to the r/-derivatives 
are written at the new time level r~+ 1/2, using second 
order correct central finite difference approximations. 
The finite difference equivalent to 0C__A/0{ is written at 
the old time level %. Given the centrifugal character of 
the flow in a wall-jet electrode reactor and the pre- 
dominance of the radial convection over the radial 
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Fig. 5. Illustration of the agreement between computed and experi- 
mentally determined chronoamperometric transients using as a 
model reaction the reduction of ferricyanide ions at a platinum 
electrode surface from a 0.01 M K3Fe(CN)6-0.01 M K4Fe(CN)6 
solution containing 1 M KC1 as supporting electrolyte (E 0 = 
2.28 x 10 1V vs SCE, E = -4.50 x 10-1V vs SCE for (a) and 
-4.70 x 10-1V vs aCE for (b), R=2 .000  x 10-2m, a = 2 . 0 0 x  
10-3m, H/a=13 ,  kr=0.82 ,  DA=7 .3m2s  1). (a) Vf=1.689 
x10-6m3 s-l; (b) Vf= 2.981 x 10:-6m3 s -1. 

diffusion, the ~-derivative is approximated by the 
second order correct backward finite difference 
equivalent. The resulting finite difference equation is 

ci, j ,n+ 1/2 _ (.i,j,n 
( iA{ )  5 / 2 - A  ( A T / 2 )  ' ' A  

c ~ J -  l ,n+ l/2 - 2ciAJ, n+ l/2 -I- C_~ j +  l ,n+ l/2 

(A,)  2 

8v 
- - - ( i ,  A~)((j  - 1/2)Aft) 

27DA 

c i-2d, n _ 4CA-I,j,. 3CC~J,n A + 
2A~ 

tl c i , j+l ,n+l /2  __ C_C_ ~" 1,n+l/2 

+ 9~gg ((j -- 1/2)Ar/)2--a 2At# 

(34) 

which can be rearranged to 

12 
(At/)2) -A 

+ 2 ((iAAS@5/2 + 1 X~cij, n+l/2 
TX  )q 

1./ 2 l__...~x~ C , ' j+l'n+l/2 ( l) 

4/./ . . 

// 16u .['. 2) ) r'i-l'j'~ + A,, 

+(2(iAA~_@ 5/2 4u ( 1 )  ) 
9DAi j - -  AT C~ j'" (35) 
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The above equation contains three values of the 
dependent variable at the unknown time level 
rn +t/2, arranged along the vertical part of the T shown 
in Fig. 4 and three values of CA at the known time 
level %, arranged along the horizontal part of that 
T. Consequently, Equation 35 is implicit in the fl- 
direction and explicit in the ~-direction. Application 
of the boundary conditions at r /=  0 and r] = r/c to 
Equation 35 results in 

(.2(iA~) 5/2 1/ 3 
A+- +(A,7)2 

( 21/ .,, ~.-~i-2,1,n I I 81/ . "~ i-l , l ,n 
= - t77~A,+-,,7),..A + [~,A,7)C'/, 

= _ t-'i, 1 at the electrode surface and for j  = 1. as C2 ° ~A 

1/ 1 .'~ ci,  Nrl - 1,n+ 1/2 (]~D~A (N'/']- ~) 2A'O (AT])2) -A 
+(2 (iA~)5/2 1 / ( 1 )  2 ( ~ )  

A ~ + T g S - 7  N~-g  Zx~+ 

( 1 / (  ~ ~)2 1 ) X CA Nrhn+ll2--~ 2 Nr]- A r ] + ~  

/ 161/ . /  +t~ltNTI--~)ATI)CA-I'Nrl 'n 

( (iz~)5/241/ ( 1 ) ) l ' - , i ,  Nrhn 
+ 2 Am 9DAi N r / -  At/ ~A (37) 

for j  = N~/, as Cj{ N°+l = 2 -Ci~ N'7 at the edge of the 
concentration boundary layer. The sets of finite differ- 
ence equations for i = 1, . . . ,  N{ exhibit a tridiagonal 
coefficient matrix and can thus be solved by using the 
Thomas algorithm [15,16]. 

For the next half time step, from rn+l/2 to %+1, a 
second finite difference equivalent to Equation 20 is 
used, for which the equivalent to 0CA/0{ is written 
at the new time level r .  +1 and the equivalent to the 
rbderivatives ,are written at the old time level %+ 1/2. 
Ttge resulting equation • ,i :., :j;!: . ; LI: 

( 2 :  -',',"+' 
-- \ 2 7 u  A \ z /  ) - -  

+ (2 (i~--~)T5/2 ~-94--DAi(J-~)A~l)ci£ j'n+l 

( 1 1 / (  ~)2 A~]) 1,n+ 1/2 
= 18~A / - _ c ; 7 -  

((iA~) s/2 1 ~ci, , ,n+l/2 
+ 2 \  Ar  (A~)2) - A  

+ ((~)2-1- I~DA ('--~)2A~)C2 ,+l'n+l/2 

(38) 

is thus implicit in the ~-direction and explicit in the 
rbdirection. It contains three unknown values of CA, 
arranged along the horizontal part of the T shown 
in Fig. 4 and three known values of the dependent 
variable, arranged along the vertical part of that T. 
Substitution of the boundary conditions at ~ = 0 
into Equation 38 yields 

(2(A~)5/2 16u ( j  1~,, "~cl,j,n+ 1 

: \27DA(161/ ( j _ l ) A r ] )  

( (21~  1 1/ A,nx~C 
+ (A-,D 2 lgDa j 2 ) - " ) - ~ "  

Jr-2(-(A~)5/2 1_ .~cl, , ,n+l/2 
k Am (At/)2) :a 

1 // (._1"~2 A ~f,l , j+l,n+l/2 
+ ( A ~ ) 2 + 1 8 ~ A t J  2) ~7) L--:A 

(39) 

for i = 1 and 

_ (  32u ( j  1"~_ "~.-.1,j,n+l 
\27DA -- 2)  zarl) t~A 

( 1 u ( -21) 2 _~,-~2,j-l,n+l/2) 
+ (A-~) 2 185A J A,, ~--A 

+ 2 (-(2~--~-~r)5/2 (AT])2) --A 1-~c2 ' j ' n+l /2  

( ( 2 1 u 1~_ ~2,j+l,n+l/2 
+ FXT+ -vai  

(40) 

for i =  2, as C~ j = 1 and _CA l'j = CA Lj. The sets of 
finite difference equations for j = 1 , . . . ,  Nr/can thus 
be solved forward from i = 2 [15,17, 18]. 

The two successive half time steps are to be con- 
sidered as a single step consisting of two parts, with 
C2 j'n+l/2 being intermediate values from which the 
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values of the dependent variable at the new time level 
are computed. The intermediate values are not repre- 
sentative for the actual values of the dependent vari- 
able at ~-n+1/2 [16]. 

The numerical scheme presented has been shown to 
be stable for any ratio of the time increment to the 
space increments [15,16]. 

Electrode current 

The electrode current at any instant is given by [2,6] 

I = - FDA 0 ~:0(27rr)dr (41) 

and thus by 

1 1 1/4 , :  ) 

in the computational (~, ~)-plane. Knowing the time 
dependent concentration profile of A, the electrode 
current can be computed from 

I : - 27rR3/4FDACbA ulk Z i-I~4 
i = 0  

A~ 3/4 i ,2,n i, 1,n 
× ~ ( C ~  - C  A ) (43) 

4.1.3. Practical computation. Applying the space and 
equation discretization presented, single step chro- 
noamperometric transients were computed using the 
Think ® Pascal Compiler on a Macintosh II fx  
personal computer. 

Convergence was examined by varying the number 
of grid points and the time increment used. For  the 
geometry of  the wall-jet electrode reactor previously 
reported [1] and volume flow rates ranging from 
1.6 x 10 6 to 4.3 x 10-6m3s -1, a grid of 
N~ = 100 × N~/= 50 points and an initial time incre- 
ment A% = 5 × 10 -8, being doubled every ten time 
steps for the first hundred steps, were found to give 
convergence to three significant figures in the 
computed current, using values for u and DA typical 
for aqueous electrolyte solutions (u = 10-6m2s-1; 
D A : 10-9mZs-1). Given the typical values for u 
and D A in aqueous electrolyte solutions and taking 
into account the theoretical observations made con- 
cerning the thickness of the fluid layer adjacent to 
the impinged surface of a wall-jet electrode reactor, 
in which the concentration changes occur, the value 
for ~c ~ 3.96 (DA/U) 1/3 used in the calculations was 
chosen to be 0.4. This value for ~o was also used in 
the calculations of  Compton et al. [2-5], who exam- 
ined the influence of the value chosen for ~c on the 
accuracy of  the computed steady state mass trans- 
port- l imited current and found 0.4 to be optimal. 
The value for the reactor constant kr used in the calcu- 
lations is 0.82 [1]. 

The calculations require about 2.3 real time seconds 
per time step. The total number of time steps required 
to compute a current transient in a time frame of 3 to 
5 s, ranges from 200 to 250 depending upon the reac- 
tor parameters used. 

4.2. Comparison o f  computed and experimentally 
determined current transients 

The validity of  the computational method was verified 
through comparison of calculated with experi- 
mentally determined single step chronoampero- 
metric transients, using as a model reaction the 
reduction of  ferricyanide ions at a platinum elec- 
trode surface. 

Typical examples of the agreement between com- 
puted and experimentally determined current time 
characteristics are shown in Fig. 5. As can be seen, 
the computed chronoamperometric transients are in 
excellent agreement with the experimentally deter- 
mined ones, over the whole time frame under con- 
sideration. In evidence, the computed values of the 
mass transport-l imited current at any instant differ, 
at the worst, by 3% from the experimentally deter- 
mined values. Furthermore, it is found that the best 
fitting between calculated and experimentally deter- 
mined current transients is obtained using 7.3x 
10 -l° m 2 s -~ as a value for the diffusion coefficient of 
the ferricyanide ions, which is in accordance with the 
literature value of 7.7 + 0.4 x 10 -1° m 2 s -1 [19, 20]. 

5. Conclusions 

The numerical computational method presented, 
based on a second order-correct implicit finite differ- 
ence approach and a space coordinate transformation 
making the use of a simple Cartesian grid compatible 
with efficient computing, proved to be an accurate and 
efficient way of solving problems of mass transport to 
the impinged surface of a wall-jet electrode reactor. It 
distinguishes itself in particular by the possibility to 
perform the calculations on a personal computer. 

The computational procedure thus provides the 
necessary and powerful tool for quantitative electro- 
chemical investigations of the mechanism of electrode 
processes, using a wall-jet electrode reactor as a 
hydrodynamic electrode system. 

Having the disposal of a suitable wall-jet electrode 
reactor [t] and the computational method presented 
to solve the mass transport problems involved, now 
allows us to achieve further insight in the mechanism 
of the a.c. electrolytic graining of  rolled aluminium 
substrates, being the main goal of  our research. 
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